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A SUCCESSIVE  SWEEP  METHOD  FOR  SOLVING  OPTIMAL PROGRAMMING  PROBLEMS 

Stephen  R.   McReynolds  and Arthur E.   Bryson,  Jr. 

Division of Engineering and  Applied Physics 
Harvard University 

ABSTRACT 

An automatic,   finite-step numerical procedure 
is described for  finding exact  solutions  to non- 
linear  optimal programming problems.     The procedure 
represents a unification and  extension of the 
steepest-descent,   and second variation  techniques. 

The procedure  requires  the  backward  Integration 
of the usual adjoint-vector differential equations 
plus certain matrix differential equations.    These 
integrations correspond,  in the ordinary calculus, 
to finding the  first  and second  derivatives of  the 
performance  Index  respectively.     The matrix 
equations  arise   from an Inhomogeneous  Ricatti  trans- 
formation,  which generates  a  linear "feedback 
control   law"  that  preserves   the  gradient  histories, 
H  CO   ,   on  the next  step £r  permits  changing them 

by controlled amounts, while  also  changing  terminal 
conditions by controlled amounts.     Thus,   in a  finite 
number of  steps,   the gradient  histories  can be made 
identically zero,   as  required   for optimallty,  and 
the  terminal conditions satisfied  exactly.     One  for- 
ward  plus  one backward sweep,   correspond  to one step 
in the  Newton-Raphson technique   for   finding maxima 
and minima  in the  ordinary calculus. 

As  by-products,   the procedure produces   (a)   the 
functions  needed   to  show that   the program  is,  or  is 
not,   a  local maximum   (the generalized  Jacobi  test) 
and   (b)   the  feedback gain programs  for neighboring 
optimal  paths  to  the  same,   or a   slightly  different, 
set of  terminal  conditions. 

CLASS  OF PROBLEMS  TREATED 

The method  is  applicable   to  a  class  of non- 
linear optimal programming problems where one wishes 
to determine control   functions     u(t)     in 
t- _^ t _^ t.     so as   to minimize   (or maximize)   a per- 

formance   index of   the  form 

the whole interval    t. where H is the 

J = *[x(tl),tl] +   L[x(t),u(t).t]dt 

subject to the constraints 

x ■ f[x(t),u(t),t]  x(t) is an n-component 
state vector 

u(t) is an m-comporent 
control vector 

ltf[x(t,) it* ] =0   ; ^ is a q-component 
vector  (q <_ n) 

A further restriction on the class of problems 
, 2 

treated in this paper is that we assume —r is a 
3u 

positive-definite (or negative-definite) matrix over 

(1) 

(2) 

(3) 

W) 

This latter technique is reviewed briefly in the 
Appendix to this paper. 

variational Hamiltonlan introduced in the next 
section. 

The final time, t. , may be given either 

explicitly or implicitly in Eqns. (4). For 
simplicity of presentation, we will first discuss 
the case where the final time t.  is given 
explicitly. 

CASE WHERE FINAL TIME IS GIVEN EXPLICITLV 

In the usual manner we introduce the auxiliary 
scalar functions 

H(X,x,u,t) - L(x,u,t) + X f(x,u,t) 

♦(u,x,t) = tCx,!) + v *(x,t) 

(5) 

(6) 

where     X(t)     is  an n-component vector of  influence 
functions  and     v     is  a q-component  constant vector. 
We   regard    u(t)     as control   functions  and     v    as 
control parameters,  and  introduce a modified per- 
formance  index    J    where 

1 

Kv.xCtj),^]   +     J   {H[X(t)>x(t),u(t),t] 

- X   (t)x)dt (7) 

Note that when (2) and (A) are satisfied, (7) is 
identical with (1) . 

Necessary conditions for an extremal path are 
(e.g. see Ref. 1) 

(8) 

(9) 

(10) 
T x'a,) t[v,x(t1),ti] (*x+U *x>t=t 

Suppose we arbitrarily  choose some control 
functions    u(t)     and some  control parameters     v   , 
integrate Eqns.   (2)   forward with  Initial  conditions 
(3),   and Eqns.   (8)  backward with boundary conditions 
(10).     In general,  Eqns.   (A)   and  (9) will not be 
satisfied.     Now,   consider  a perturbation around 
this  path: 

6x =  f  6x + f  6u x u 

6X  = -H    6x -   fT6 
xx 

H    6u 
xu 

5H H     «x + H     6u + f  «X     specified ux uu u 

öx(t  )     specified 

6X(t.)   -  (♦    6x + i|i dvl 
1 XX X t = t 

&lp f*  «xl. specified 

(11) 

(12) 

(13) 

(14) 

(15) 

(16) 
"1 

We may regard   (11)-(16)   as  a linear. 
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inhomogeneous two-point boundary value problem that 
determines the functions 6x(t) , 6X(t) , 6u(t) , 
and the parameters du in terms of specified 
functions 6H (t)  and specified parameters 6x(t0) 

and 6$  .    This is very close to the viewpoint taken 
by Merriam (Ref. 2) and Kelley, Kopp, and Moyer 
(Ref. 3). 

To solve this two-point boundary value problem 
we may solve (13) for  6u(t)  in terms of 6x(t) , 
iSX(t) , and 6H (t) , provided H (t)  is non- 

,   ,        u uu singular: 

6u -H"ll-6H + H 6x + fT6Xl 
I 111 It IIV II      ' 

(17) 

and, upon substituting (17) into (11) and (12), we 
obtain 

where 

6x A 6x + B 6A + v (18) 

6\ C 6x - AT6A + w (19) 

A f  - £ H-1!! 
X     U UU  IX 

(20) 

B -f H-'f1 
u uu u (21) 

c -H  + H  H^H 
XX    xu uu ux 

(22) 

V f H-^H 
u uu u (23) 

w -H  H'^H 
xu uu  u (24) 

THE INHOMOGENEOUS RICATTI TRANSFORMATION 

In view of Eqns. (15) and (16), let us introduce 
the following inhomogeneous Ricatti transformation 
(suggested in Refs. 4, 5): 

6X(t) = P(t)Sx(t) + R(t)dv + h(t) (25) 

6* - RT(t)6x(t) + Q(t)dv + g(t)        (2b) 

where dv and 6ip    are constant infinitesimal 
vectors,  P(t) , R(t) , and Q(t)  are matrix 
functions, and h(t)  and  g(t)  are vector functions. 
Now, differentiate (17) and (18) with respect to 
time: 

6X P 6x + P 6x + R dv + h (27) 

(28) 

(29) 

0 = R 6x + RT6x + Q dv + g 

Using (25) in (18) gives 

6x - (A+BP)6x + BR dv + Bh + v 

Equating (19) and (27) and using (25) and (29) to 
eliminate 6x and 6X     , we have: 

(C-ATP-PA-PBP-P)6x - [(AT+PB)R+Rldv 

- [(A +PB)h+Pv-w+fil = 0      (30) 

In a similar fashion, substitute (29) into (28): 

[R1+RT(A+Br)]6x + (RTBR-K!)dv + RT(Bh+v) + g = 0 (31) 

Viewing (30) and (31) as identities, valid for 
arbitrary values of  6x and  dv , it follows that 
the coefficients of öx and dv must vanish; this 
yields differential equations for P , R , Q , h , 
and g . Also, if we require that (30) and (31) be 
equivalent ^o (15) and (16) at the terminal time, we 

obtain boundary conditions for P , R , Q , h , and 
g I 

P - -AVPA-PBP+C ; P(t1) - [^*xx+v\x] (32) 

R - -(AT+PB)R    ; R(t1) - [^]t.t 

Q - -R BR ; Q(C1) - 0 

h - -(A +PB)h-Pv-H/; h(tl) - 0 

g - RT(Bh+v)      ; g(ti) - 0 

(33) 

(34) 

(35) 

(36) 

Note that (32) is a nonlinear matrix differential 
equation (a matrix Ricatti equation), while (33) is 
a linear matrix differential equation using the 
solution of (32) : (34) Is a matrix quadrature using 
the solution of (33); (35) is a linear vector 
differential equation using the solution of (32), 
and (36) is a vector quadrature using the solution 
of (35). 

By integrating (32) -(36) backward along with 
(8) from t1  to  CQ  (a "backward sweep") we 

generate all possible solutions to (11)-(13) that 
satisfy the terminal conditions (15)-(16).  We may 
think ot (25)-(26) as "boundary conditions" at time 
t 

conditions (15)-(16) at time t Thus the 

boundary conditions at the terminal time are 
"swept" backward to th3 initial time: a "forward 
sweep" then generates the required particular 
solution that also satisfies the initial conditions 
(14).  This is precisely the approach taken by 
Bryson and Frazier (Ref. 6) to solve the linear 
smoothing problem except that the sweeps occur in 
the opposite order; the "forward sweep" Is the 
Kalman-Bucy filter which involves a matrix Ricatti 
equation, and the "backward sweep" gives the 
smoothing solution that satisfies the terminal 
conditions. 

After completing the backward sweep, the 
required values of dv  in terms of the desired 
infinitesimal changes  6H (t) , 6x(tn) , and  6I|J 

can be obtained using (26): 

dv [Q"1(6ii-g-RT6x)] (37) 

Having these values of  dy , we could, in principle, 
substitute them into (29) and integrate these 
equations forward with (25) and (17) to find <5x(t) , 
6X(t) , and 6u(t) (a "forward sweep"). 

Alternatively, using (25) we could regard (17) 
as a linear feedback law for determining  6u(t) : 

6u(t) = -H 1(t){[H 
uu     u 

(t)+f1(t)P(t)]6x(t) 

+ fT(t)R(t)dU - 6H (t) + fT(t)g(t)}   (38) 

in (38) may be evaluated at the 
: = t  as was done in (37) or we may 

Note that  dv 
initial time 

evaluate it at several intermediate times in the 
manner of a sampled-data feedback law or we may 
evaluate it continuously in the manner of a 
continuous feedback law.  If we do evaluate dv 
continuously, then (38) becomes 
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iuCt) - -HT'UH  +£T(P-Rq"1RT)16x + [f^RCr1]«"1 

uu  ux u u 

+ [-SH +f (h-RQ-'g)]) (38a) 

Now, the first term In square brackets on the right 
hand side of (38a) is a linear feedback on deviations 
6x(t)  from the nominal state variable histories and 
will keep 6H (t) - 0 , 6* - 0 , for «x(t0) +  0 . 

The second term in square brackets is the forcing 
function necessary to produce the desired changes 
6* while holding  äH (t) - 0 .  The third term in 

square brackets is the forcing function necessary to 
produce the desired changes 6H (t) while holding 

6* • 0 ; it is a linear functional of 6H (t) , and 

vanishes if 6H (t) - 0 . We could, therefore, 

integrate (2) forward (a "forward sweep"), using 
(38) in 

u(t) ,(t) + 5u(t) 

6x(t) ■ x(t) - x   (t) 
old 

(39; 

(40) 

The advantage of this procedure over previous 
gradient procedures is that we have separate, precise 
control over the desired changes  ÖH (t)  and 64/ . 

By repeating this forward-backward sweep several 
times we can bring H (t) and ^[x(t1),t1] pre- 

cisely to zero while increasing the performance 
index; the required number of steps depends on the 
successful range of linearization of (11)-(16). We 
suggest that if N steps are to be used, it would be 
reasonable to choose 

6H(r)(t) E(
r>H(r-1>(t) (41) 

6* (r) :<r>*(r-1)(x(t1),til    (42) 

.(r) where ev" ■ r/N  and r  is the step number; in 
this way, larger and larger reductions in the 
"residuals" are taken each step and, on the last 
step, the whole remaining correction is made, 
bringing H (t)  and  l|i precisely to zero. 

LOCAL OPTIMALITY - GENERALIZED JACOBI TEST 
AND CONJUGATE POINTS 

When we have succeeded in bringing H (c) = 0 

and  iKx(tl),t1l - 0 , we have generated an 

admissible extremal path.  For this case, the feed- 
back law (38a) simplifies to: 

is called a conlugqte point to the terminal manifold 

iHx(t ),t 1 ■■ 0 . An extremal path is not an 

optimal path if it contains a conjugate point (see 

e.g. Ref. 4). 

INTERPRETATION OF THE MATRICES P. Q, AND R 

Let us define a return function. V(v,u,x,t) 

which is the value of J in (7) when starting from 
state x at time t ^ tj using the control 

functions u(t)  in (2) and the control parameters 
v .  Infinitesimal variations away from a given set 
of initial conditions, Sx(t) , and infinitesimal 
changes in the control parameters, dv , while 
holding 6H (t) • 0 , will produce an Infinitesimal 

change in the return function, 6V , given by 

•[ XT(t),*Tlx(t1),ti «x(t) 

du 

(W 

LR,(t),Q(t) 

From (44) it is clear that 

i(6xT(t),dv'r)|P> ) ■ - 6x(t) 

dv 

P(t) - 

T 
A (t) 

ä^V 
3x(t)3x(t) 

3V 
3x(t) 

, R ■ 

* 
9V 
3v 

3^7 
3v3x(t) , Q 

9v' 

From (26), or (45)-(46), we can also write 

RT(t) 
3<i *('> • ü 

(44) 

(45) 

(46) 

W" 

3x(t) 

and we note these quantities are similar to the 

steepest-ascent quantities \       (t)  and 

of Bryson and Denham (Ref. 7). 

If the path is extremal  (H (t) = 0) , and 

satisfies the terminal conditions (i)j[x(t j) , t j ] - 0) , 

then V • V(x,t)  is the optimal return function of 
Hamilton-Jacobl-Bellman theory (see e.g. Ref. 8). 
Equation (44), using (26) with  6* - 0 , g ■ 0 , 

to eliminate dv becomes 

6V - XT6x + | 6xT(P-RQ"1RT)6x (47) 

which gives the infinitesimal change in the optimal 
return function for infinitesimal changes in the 
initial conditions  6x(t)  holding the final 

conditions constant  (6* = 0) , 

6u(t) - -H-^(t)lHux+f^(P-RQ-
1RT)]öx(t)       (43) 

since 6* - 0 and 6H (t) - 0 implies that 

„.„-h-g-O  (see Eqns. (23), (24), (35), 

(36)).  If the symmetric mxm matrix H u(
t)  is 

positive (or negative) definite and the symmetric 

nxn matrix P-RCT'R  is finite over the semi-open 

Interval t» <, t < t, , then (43) indicates 

6u(t) - 0  if  |5x(t ) - 0  and we are assured that 

we have generated a path that is at least a local 
optimal path. This is a generalized Jacobi test; 

If P-RQ-'R  becomes infinite at some point this 

SUMMARY FOR CASE WHERE FINAL TIME 
IS GIVEN EXPLICITLY 

(A) Estimate the control functions u(t)  and 
integrate x • f(x,u,t)  forward with given values 
of x(t ) .  Record the constants  *[x(t1),t1) , 

and the functions u(t) , x(t) . 
integrate 

(B) Estimate the control parameters  v  and / 

,1,  ^   ,. ,..T, 
-f X backward with t* +v O. 

■1 

using u(t) , x(t)  to evaluate  f lx(t),u(t),t] . 
T 

Calculate H = X f and Its derivatives H  , H  , 
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Hux ' Hxx as you go"  Hüu 'nust also be calcul"ed. 

While doing so, one can verify that H   Is 
uu 

positive (or negative) definite.  If H   does not 
uu 

satisfy the appropriate condition, better estimates 
of u(t)  and v are required In (A). 

(C) Simultaneously with (B), Integrate Eqns. 
(32)-(36) for P , Q , R , h , and g backward, 
using the derivatives of H from (B) and 5H (t) 

from (41).  Record the forcing functions 

H-i|i(t)[-6Hu(t)+fJ(t)h(t)) - U(t) 

and the feedback gains 

Hüi(t>[HuX
(t>+£u(t)P(t)1 " K(t:) 

H^(t)fJ(t)R(t) - L(t) 

(D) Determine and record the parameters dv 
from (37) , i.e. 

dv - Q-1(t0)(e4'-g(t0)-F
T(t0)6x(t0)l 

(E) Repeat (A) using the improved estimates of 
u(t) 

u(t) " Uold(l:) + U(t) " K(t)lx(t)-xold(t)l - L(t)dv 

(F) Repeat (B>, (C), and (D) using the 
Improved estimates ui  v . 

old 

(G) Repeat (E) and (F) until H (t) - 0 , 
1J.(x(t1),t1l - 0 . u 

CASE WHERE FINAL TIME IS GIVEN IMPLICITLY 

If the final time, tj , is given implicitly In 

(4), then it is necessary to estimate  t   for the 

first forward sweep, in addition to u(t)  and v . 
A few additional equations must be integrated on the 
backward sweep in order to determine the required 
dt,  for the next forward sweep. 

The development is the same as in the previous 
case through Eqn. (10); at that point an additional 
necessary condition is required to determine the 
final time, namely the transversallty condition 

aitj [£_/£! +L) I 
'D VDt   ;)t-t 

(54) 

a[x(t1),t1i - [*t.+*xf+LJtMt 0 (48) 

The development is again the same up to Eqns. (15) 
and (16) which are replaced by the following: 

^V   *xx(tI>-W'n'(t1>  ««<*!> 

4$ 

dfl 

where 

inVj) ,nT(ti),a(t1) 

dv 

it, u uu u 

m1^) = [WuuWux^Vt 

nVj) - [2^ -H H-if%T)f t 1    Dt    u uu u x't-t, 

(49) 

(50) 

(51) 

(52) 

(53) 

Dt   it        ix tu      u 

ü - -ir'a1» +H t+f
T» f+H  f) 

uu  u xt  xt  u XX  ux 

Equations (17)-(24) are still applicable but, in 
view of (49)-(51), the inhomogeneous Ricattl trans- 
formation beginning at (25) must be generalized to 
the following: 

6X(t) P(0 ,R(t) ,m(t) ix h(t) 

d* - RT(t).Q(t) ,n(0 du + g(t) 

d!) inT(t),nT(t),a(t) dt 
. 1. 

ß(t) 

Differentiating (55)-(57) with respect to time, 
using the fact that dv . d.i , dv , and dt,  a 

constants, we obtain 

'i\ P ,R ,m' 6x ' '? ' h 

0 - RT,Q ,k dv + RT 6i  + g 

0 m ,n ,Q d^ mT B 
^     -i . J 

(55) 

(56) 

(57) 

(58) 

(59) 

(60) 

Using (55) in (18) gives 

6x (A+BP)6x + BRdv + BHdt, + Bh + v (61) 

Using (55) in (19), together with (61), we can 
eliminate dX and 6x from (58)-(60), and obtain 
three equations like (30) and (31) In ix , dv , 
and dt. .  These three equations are satisfied 

identically if we choose 
satisfy (32)-(36) and 

P , Q , R , h , and g  to 
i , n , o to satisfy 

+PB)m - 0 (62) 

-RTBm (63) 

T 
-m Bm (64) 

-mT(Bh+v) (65) B 

where the boundary conditions for m , n , o are 

given by (52)-(54). Note (62) is the same linear 
vector differential equation as (33) whereas (63) 
anc (64) are simply quadratures. 

If (62)-(65) are included in the backward 
Integration sweep, then it is possible to solve for 
both dv and dtj  at t - t0  , using (56) and 

(57) where desired values of d* and dn for the 
next step are introduced.  The desired value of 
6Hu(t)  must be used in solving for h , g , and  ß 

from (35), (36), and (64. 
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APPENDIX 

THE NEWTON-RAPHSON METHOD AND ITS APPLICATIONS 

TO ORDINARY CALCULUS PROBLEMS 

In this Appendix the Newton-Raphson method is 

briefly stated.  It will be seen that the Newton- 
Raphson method applied to optimization problems 
becomes a second-order iterative scheme which can be 
applied in t..<; neighborhood of a non-singular 
optimum in order to obtain rapid convergence. 

The formulation of second order steepest-ascent 

methods may be based upon a simple extension of the 
Newton-Raphson method used to solve a set of 
simultaneous nonlinear equations.  Suppose one 

-vector (x, )  such wishes to find an 

that 

P(x) - 0     P ■= (Pj,..^) 

The Newton-Raphson method generates a sequence 

(x(0) .xO ,...)  by means of an iterative relation 

(A2) . 

-k+1 
uax' 

P] 

(Al) 

(A2) 

The rationale for this is obtained by expanding 

p(x)  in a power series around x  . 

P(xk+dx) P(xk) + f 3x 
dx + 0(dx2) (A3) 

(A4) 

Setting P(x +dx) - 0 , one sees that 

dx -  (f^-'PUk) + 0(dx2j 

b"  ignoring second and higher order terms on the 
right hand side of (A4) one obtains an estimate of 
the error in x within first order accuracy.  Thus 
(A2) approximates the solution within a second order 

error.  The method naturally assumes j^    to be 

nonsingular in the region containing  (xk)  and the 

solution. 

The Newton-Raphson method may be extended to 

finding a local maximum of a function of several 
variables  f(x) .  If f is continuously 
dlfferentiable, a local maximum x is 
characterized by being s solution to the 

following equations 

f  - 0     1-1 n (A5) 
xi 

Applying the Newton-Raphson method to these 
equations, one arrives at a second-order steepest- 
ascent method by merely identifying £_  with 

P  in (A2). 1 

The method may be readily extended to problems 

with constraints. Suppose the maximum of f is 
wanted subject to the added constraint 

g(x) - 0 (A6) 

In place of this problem one may substitute the 
problem of extremizlng f+Xg with respect to x 
and  A  as independent variables.  This problem 
has no constraints and may be handled as the first 
case.  An extremal is characterized by (A6) and 

(A7) f + Xg - 0 
x    x \ 

Expanding (A6) around a nominal solution  (x 
one obtains the following set of linear, 
inhomogeneous equations to solve: 

,xk) 

0 +Xg  )dx + g dX 
x Bxx     ''x 

(A8) 

+ g. dx 

Solving (A8) yields corrections dx and dX  , and 
the second order steepest-ascent method becomes 

k+1 - _k ^ ... 

k+l 
(A9) 

Several cautions must be exercised. One is 
that dx must be small in order to guarantee con- 
vergence, which implies that the original error 
should not be too big.  Secondly, the nominal and 
the maximum must be non-singular and normal.  This 
is necessary to guarantee the inversion of the basic 
equations.  The non-singularity condition guarantees 
that one can solve for dx .  The normality con- 
dition guarantees that one can solve for dX . 
Thirdly, one should note that the second-order 
steepest-ascent method seeks out stationary 
solutions, regardless of whether they are local 
minima, local maxima, or saddle points.  In order 
to be sure that the sequence converges to the de- 
sired extremum, the eigenvalues of the second 
derivative matrix must be checked.  This can be seen 
for the problem without constraints by substituting 

(A2) with P = f  into a power series for f 

around x^ . 

f(x  ) - f(xk> - i fxf;ifi + oit*> (A10) 

k+l k 
In order to guarantee  that    f(x      )   >  f(x )   ,   it  is 
necessary  to  assume    f       < 0   . 

McReynolds 
and Bryson 
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